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by
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Lecture Abstract

First, indentation basics are presented through a flash-back to the test’s development from its origin in the beginning of the 19th century,

until now. Some of the test’s shortcomings are also discussed and an alternative way of handling indentation (load vs. depth) data is

proposed. It starts from the simple assumption that the displacement profile underneath a pyramidal (Berkovich/Vickers) tip for very

shallow indents may be approximated by Boussinesq’s classical solution, while for deeper ones it should be determined in connection

with the tip’s specific geometry. With the above assumption for the displacement field in the neighborhood of the indenter, corresponding

expressions for the strain are deduced, while the local stress is assumed to vary linearly with strain and its gradient, utilizing the Gradient

Elasticity theory. The so-calculated stress components, as well as the von Mises equivalent stress, turn out to be parametric functions of

the material’s constants modeling elasticity (Young’s modulus, Poisson’s ratio) and inhomogeneity (gradient coefficient or internal length)

as well as of the maximum elastic displacement value (coming from the Boussinesq’s solution) of strain. By properly adjusting these

parameters, the proposed formulation seems to be able to predict the mechanical response of the material underneath the indenter for the

specific pyramidal tip geometry (Berkovich or Vickers).
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■ Hardness Measurement with Indentation
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MICRO- &  NANO- INDENTATION

● Hardness

- Brinell Test (1900)

𝐻 =
𝑃

𝐴𝐶
;

● Hardness Tests

𝑃: 𝐴𝐶 :Applied Load Contact Area

A 10-mm diameter hardened steel or carbide ball is pushed into the surface of the 

material, with a 3000 kgf (~30 kN) imposed load. The depth to which the ball 

penetrates the material surface is an indication of the Brinell Hardness Number

- Vickers Test (1921)

The indenter shape should be capable of producing geometrically similar

impressions, irrespective of size, with the impression having well-defined points

of measurement; and the indenter should be hard to deform. A diamond in the

form of a square-based pyramid satisfied these conditions.
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● Meyer Hardness

Meyer hardness is defined as the applied load over the projected  contact area

𝐻𝑀 =
𝑃

𝐴𝑝

● Relation between HM and Yield Stress (Tabor 1951)

The significance of the hardness value is due to the simple relationship 

between Meyer hardness and yield stress

𝐻𝑀 = 3 𝜎𝑦

● Problems concerning the interpretation of indentation data

1. Measured hardness increases with decreasing depth of indentation  for 

very small indents.

2. Some materials exhibit a significant amount of elastic strain during

deformation under the tip of the indenter

𝐴𝑝: Projected area



5

Load versus depth for electropolished  nickel (Pethica 

et al 1983)
Load versus depth for mechanically polished silicon 

(Pethica et al 1983)

Hardness versus maximum penetration depth  for 

electropolished nickel (Pethica et al 1983)

Hardness versus maximum penetration depth for

mechanically polished silicon (Pethica et al 1983)



• Sneddon’s solution for axisymmetric tips (1965)

𝑆 =
𝑑𝑃

𝑑ℎ
=
2𝛽

𝜋
𝐸𝑒𝑓𝑓 𝐴𝑝; 𝐴𝑝 = 𝛼ℎ𝑐

2; ℎ𝑐 = Τ2ℎ 𝜋

𝑆: stiffness;  𝐴𝑝: projected  contact area ; 𝐸𝑒𝑓𝑓: effective modulus

𝛼, 𝛽: factors depending on tip geometry 

◼ Elastic properties calculated from elastic loading
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● Doerner & Nix (D-N) Analysis (1986)

- Assumptions: 1. Constant contact area during initial unloading

2. Initial unloading is linear (common for most 

materials in the 1/3 of the unloading curve)

- Calculation

Linear fitting to the upper 1/3 of the 

unloading curve ⇒ 𝑆 & ℎ𝑐 ⇒ contact 

surface area 𝐴𝑐 (a function of ℎ𝑐).   
Then from Sneddon’s formula:

𝐸𝑒𝑓𝑓 =
𝜋

2𝛽

𝑆

𝐴𝑐
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● Oliver & Pharr (O-P) Analysis (1992)

• Fitting of the unloading curve with a power-law relation 𝑃 = 𝐵 ℎ − ℎ𝑓
𝑚

• In addition to elastic, plastic deformation is also considered

- Definitions

Total displacement:

Residual displacement:

Elastic displacement:

ቑ

𝑢𝑡 = ℎ − ℎ𝑐𝑥
𝑢𝑝 = ℎ𝑓 − ℎ𝑓𝑥
𝑢𝑒 = 𝑢𝑡 − 𝑢𝑝

⟹ 𝑢𝑒 = ℎ − ℎ𝑓 − ℎ𝑐 − ℎ𝑓 𝑥

𝑥 = Τ𝑟 𝑎

𝑟 →
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◼ Motivation

• Problems in Nanoindentation Test modeling

−  Elastic properties calculated from “elastic unloading” rather 

than from elastic loading

−  Use of Sneddon’s solutions of axisymmetric tips for non-

axisymmetric ones (Berkovich, Vickers)

−  Use of inappropriate geometrical assumptions

−  A 3D problem considered to be a 1D problem

−  Elastic Modulus and Hardness depending on depth (ISE)

USE OF GRADIENT ELASTICITY IN 

INDENTATION



The displacement field of the material under the indenter before any 

plasticity takes place, is given by the Boussinesq’s elasticity solution

• Introduction of initial elasticity under any indenter tip
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◼ A newer approach for Nanoindentation 



• Boussinesq’s elasticity solution
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Elastic Displacement Field (cartesian coordinates)

Elastic Displacement Field (cylindrical coordinates)

𝑢𝑥 =
𝑃𝑥

4𝜋𝜇𝑅

𝑧

𝑅2
−
1 − 2𝜈

𝑅 + 𝑧
, 𝑢𝑦 =

𝑃𝑦

4𝜋𝜇𝑅

𝑧

𝑅2
−
1 − 2𝜈

𝑅 + 𝑧
, 𝑢𝑧 =

𝑃

4𝜋𝜇𝑅

𝑧

𝑅2
+ 2(1 − 𝜈)

𝑢𝑟 =
𝑃

4𝜋𝜇𝑅

𝑟𝑧

𝑅2
−
𝑟(1 − 2𝜈)

𝑅 + 𝑧
, 𝑢𝜃 = 0, 𝑢𝑧 =

𝑃

4𝜋𝜇𝑅

𝑧2

𝑅2
+ 2(1 − 𝜈)

𝑅 = 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 + 𝑧2

ℎ𝑒𝑙

𝑃𝑒𝑙

Elastic problem
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ℎ𝑒𝑙

ℎ

a
𝑃 > 𝑃𝑒𝑙

Elastoplastic problem

Berkovich Displacement Field (cylindrical coordinates)

𝑢𝑧
𝑏𝑒𝑟𝑘 = ℎ + hel − 𝑧 sin𝜑 − 𝑟𝑐𝑜𝑠𝜑 sin𝜑 , 𝑢𝑟

𝑏𝑒𝑟𝑘 =
𝑢𝑧
𝑏𝑒𝑟𝑘(1 + |sin

3𝜃
2
|)

𝑡𝑎𝑛𝜑
, 𝑢𝜃
𝑏𝑒𝑟𝑘 = 0

Total  Displacement Field (cylindrical coordinates)

𝑢𝑟
𝑡𝑜𝑡 = ቚ𝑢𝑟

𝑟→𝑟+𝑎
+ 𝑢𝑟

𝑏𝑒𝑟𝑘

𝑢𝜃
𝑡𝑜𝑡 = ቚ𝑢𝜃

𝑟→𝑟+𝑎
+ 𝑢𝜃

𝑏𝑒𝑟𝑘 = 0

𝑢𝑧
𝑡𝑜𝑡 = ቚ𝑢𝑧

𝑟→𝑟+𝑎
+ 𝑢𝑧

𝑏𝑒𝑟𝑘

• Elastoplastic case 𝑎 = ℎ 𝑡𝑎𝑛𝜑 1 + si n Τ3𝜃 2 2

𝜑 = 65.03°
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• Displacement of a Berkovich tip taking elasticity into account



Displacement field (cartesian coordinates):
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𝑢𝑥 =
𝑥cos(𝜑)( sin2 (

3
2

tan−1(𝑥,𝑦)) + 1)(sin(𝜑)(ℎ + hel − 𝑧)− cos(𝜑) 𝑥2 + 𝑦2)

 𝑥2 + 𝑦2
+

hel2𝑥(
2𝜈 − 1

 𝑥2 + 𝑦2 + 𝑧2 + 𝑧
+

𝑧
𝑥2 + 𝑦2 + 𝑧2)

2(1 − 𝜈) 𝑥2 + 𝑦2 + 𝑧2

𝑢𝑦 =
𝑦cos(𝜑)( sin2(

3
2

tan−1(𝑥, 𝑦)) + 1)(sin(𝜑)(ℎ + hel − 𝑧)− cos(𝜑) 𝑥2 + 𝑦2)

 𝑥2 + 𝑦2
+

hel2𝑦(
2𝜈 − 1

 𝑥2 + 𝑦2 + 𝑧2 + 𝑧
+

𝑧
𝑥2 + 𝑦2 + 𝑧2)

2(1− 𝜈) 𝑥2 + 𝑦2 + 𝑧2

𝑢𝑧 = sin2 (𝜑)(ℎ + hel − 𝑧) +
hel2 (𝑥2 + 𝑦2 + (

1
2 − 2𝜈

+ 1)𝑧2)

(𝑥2 + 𝑦2 + 𝑧2)3 2Τ
− sin(𝜑)cos(𝜑) 𝑥2 + 𝑦2
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• 3D contour plots - 𝝈𝒛𝒛
𝒈𝒓𝒂𝒅
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Berkovich Vickers

Kampouris et al. (2022)



Zhang et al. (2005)

Sharma et al. (2021)
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◼ Shear bands during indentation

Kampouris et al. (2022)

Vitreloy 106

Pd80Si20
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• Elastic modulus calculation

Traction Vector

𝑻(𝒏) = 𝒏 ∙ 𝝈

Traction Vector perpendicular to indenter tip face

𝑻(𝒏) = 𝒏𝑓𝑎𝑐𝑒 ∙ 𝝈𝑒𝑙𝑎𝑠𝑡𝑜𝑝𝑙𝑎𝑠𝑡𝑖𝑐

𝑻(𝒏) = ⋯ = 𝑓 𝜆, ℎ𝑒𝑙, 𝑐
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• Elastic modulus calculation

𝑻(𝒏) 𝑨𝒇𝒂𝒄𝒆 = ⋯ = 𝑃 𝜆, ℎ𝑒𝑙, 𝑐

𝝀 → 𝑬
𝒉𝒆𝒍 → 𝑯



• Application on Alumina and Glass Experimental Data

20Kampouris et al, NN21 (2022)



• Application on Silica and Borofloat Experimental Data

21Kampouris et al, NN21 (2022)


